DÖRTGENLER
Tanım: Herhangi üçü doğrusal olmayan dört noktanın dört doğru parçasıyla birleştirilmesinden elde dilen çokgene DÖRTGEN denir. A,B,C,D noktalarına dörtgenin köşeleri [AB],[BC],[CD],[DA] doğru parçalarına ise kenarları denir. ABCD dörtgenin kenar uzunluklarını [AB]=a , [BC]=b , [CD]=c , [DA]=d [AC]köşegen uzunluğunu e , [BD] köşegen uzunluğunu ise f ile göstereceğiz.(Şek.1)
*Dörtgenin iç açılarının ölçüleri toplamı 3600’dir.
m(A)+m(B)+m(C)+m(D)=3600
*Dörtgenin dış açılarının ölçüleri toplamı 3600’dir.
m(A’)+m(B’)+m(C’)+m(D’)=3600
*Bir dörtgenin aynı kenara bitişik iki açının açıortayları arasındaki açının ölçüsü diğer iki açının ölçüleri toplamının yarısıdır. X=
‘dir. (Şek.2)
*Bir dörtgenin karşılıklı iki açısının açıortayları arasındaki açılardan küçüğün ölçüsü, diğer iki açının ölçüleri farkının yarısıdır. X=
(Şek.3)
*Herhangi bir ABCD dörtgeninde [AC]
[DB]= {P} , [AC]=e [BD]=f ise
A(ABCD)=
e. f. sin
(Şek.4)
*Herhangi bir ABCD dörtgeninde S1.S3 = S2.S4 tür. (Şek.5)
*Bir dörtgenin kenarlarının orta noktaları bir ın köşeleridir.(Şek.6)
*Bir dörtgende karşılıklı iki açı dik ise, bu açıların bitişik kenar uzunluklarının kareleri toplamı birbirine eşittir.(Şek.7)
İSPAT: ADC üçgeninde [AC]2 =[DA]2 + [DC]2
ABC üçgeninde [AC]2 =[AB]2 + [BC]2 Buradan;
[AB]2 + [BC]2 = [DC]2 + [DA]2 elde edilir.
*Köşegenleri birbirine dik olan bir dörtgende karşılıklı kenar uzunluklarının kareleri toplamı birbirine eşittir.(Şek.8)
İSPAT: AOB üçgeninde [AB]2 = [AO]2 + [BO]2 DOC üçgeninde [DC]2 = [DO]2 + [OC]2 taraf tarafa toplanırsa
[AB]2 + [DC]2 = [AO]2 + [DO]2 +[BO]2 +[OC]2 (1)
AOD üçgeninde [AD]2 = [AO]2 + [DO]2 BOC üçgeninde [BC]2 = [BO]2 + [OC]2 taraf tarafa toplarsak
[AD]2 + [BC]2 = [AO]2 +[DO]2 + [BO]2 + [OC]2 (2)
( 1) ve (2) eşitliklerinin sağ taraflarının eşit olduğunu görüyoruz. Öyleyse;
[AB]2 + [CD]2 = [BC]2 + [DA]2
*Bir dörtgende karşılıklı iki kenar ile köşegenlerin orta noktaları bir paralel kenarın köşeleridir. Bu paralel kenarın çevresi, dörtgenin diğer iki kenar uzunluğunun toplamı kadardır.(Şek.9)
İSPAT: E,F,G,H sırasıyla [AB],[BD], [CD] ve [AC] nin orta noktalarıdır.
CAB üçgeninde EH // BC CDB üçgeninde GF // BC ise EF // GF (1)
DAC üçgeninde GH // DA DAB üçgeninde EF // DA ise GH // EF (2)
( 1) ve (2)’den EFGH paralel kenar olur. Bu paralel kenarın çevresi de [AD] + [BC] ‘dir.
*ABCD dışbükey dörtgeninin iç bölgesindeki herhangi bir nokta P ise (Köşegenlerin kesim noktası dışında);
[PA] + [PB] + [PC] + [PD] > [AC] + [BD] ‘dir. (Şek.10)
İSPAT: PAC üçgeninde [PA] + [PC] > [AC] ve PBD üçgeninde [PB] + [PD] > [BD] dir. Taraf tarafa toplarsak
[PA] + [PB] + [PC] + [PD] > [AC] + [BD] bulunur.
Not: P noktası köşegenlerin kesim noktası ise bu durumda [PA] + [PB] + [PC] + [PD] = [AC] + [BD] olur.
*ABCD dörtgeninin [AC] ve [BD] köşegenlerinin orta noktaları E ve F, [EF]= x ,[BD]= f, [AC]= e ise
İSPAT: A ile F’ yi; F ile de C’ yi birleştirelim.[AF]= m,[FC]= n olsun.
ABD üçgeninde kenarortay teoremine göre
(1)
DBC üçgeninde kenarortay teoremine göre
(2)
(1) ve (2)’den 2 (m2+n2)=a2+b2+c2+d2-f2 (3)
FAC üçgeninde kenarortay teoremine göre
’dir. Buradan 4x2 = 2(m2+n2) -e2 yazılabilir. 2(m2+n2) yerine (3)’de bulduğumuz eşitlikle yazarsak 4x2 = a2+b2+c2+d2-f2-e2 olur. Buradan da